Synthesis and X-ray Structures of $[Os_3Pt(CO)_9(\mu_4-\eta^2-C\equiv CPh)-(\eta^1-C\equiv CPh)(L)]$ (L = 4,4'-Dimethyl-2,2'-bipyridine, 4,4'-bis(*tert*-butyl)-2,2'-bipyridine): New Heterometallic Clusters with a $\mu_4-\eta^2$ - and an η^1 -Acetylide Group on a Spiked-Triangular Metal Core

Wai-Yeung Wong,*[a] Fai-Lung Ting,[a] and Wai-Lim Lam[a]

Keywords: Osmium / Platinum / Alkyne ligands / Cluster compounds

Treatment of $[Os_3(CO)_{10}(NCMe)_2]$ with platinum bis(alkynyl) complexes cis- $[Pt(C\equiv CPh)_2(L)]$ [L=4,4'-dimethyl-2,2'-bipyridine (Me₂bipy), 4,4'-bis(tert-butyl)-2,2'-bipyridine (tBu_2 -bipy)] at room temperature readily affords the novel, spiked-triangular heterometallic cluster complexes $[Os_3Pt(CO)_9(\mu_4-\eta^2-C\equiv CPh)(\eta^1-C\equiv CPh)(L)]$ $(L=Me_2$ bipy 1, tBu_2 bipy 2) in

moderate yields. X-ray analysis of both complexes reveals that one alkynyl moiety is coordinated to the metal atoms in a μ_4 - $\eta^2(II)$ mode, accompanied by a concomitant transfer of an η^1 -C=CPh group from the platinum centre to the osmium atom to give a metal framework with an osmium atom apically bonded to an Os_2 Pt triangle.

Introduction

There is continuing interest in transition metal σ -alkynyl complexes and polymers stemming from their possible applications in materials science.^[1,2] Within this field, rigid-rod polymers based on metals linked by alkynyl groups in a transconfiguration have proved particularly fruitful, and a number of new materials with novel electronic properties have been prepared, the nature of which depends on the metals, the ancillary ligands and the spacer units.[3-10] Likewise, cis-platinum bis(alkynyl) complexes have recently been exploited as novel precursors for the synthesis of a series of homo- or heterobimetallic complexes in which the second metal is linked to the bis(alkynyl) molecule by coordination to the alkynyl C≡C triple bonds.[11-16] The use of alkynyl platinum species as alkynylating agents is also known.^[15] These bimetallic complexes have been shown to exhibit a range of interesting chemical and physical properties.^[17] In an effort to extend this chemistry to other multimetallic systems, we have studied the reactions of some cis-[Pt(C=CPh)2(diimine)] complexes with [Os₃(CO)₁₀(NCMe)₂]. To our surprise, we have discovered that this leads to new heterometallic complexes formed by transformations involving η^1 -acetylide transfer, opening of the Os₃ triangle and formation of two Pt-Os bonds. We describe herein the characterization of two new compounds $[Os_3Pt(CO)_0(\mu_4-\eta^2-C\equiv CPh)(\eta^1-C\equiv CPh)(L)]$ [L = 4,4'-dimethyl-2,2'-bipyridine (Me₂bipy), 4,4'-bis(tertbutyl)-2,2'-bipyridine (tBu₂bipy)] showing two distinct bonding modes for the alkynyl fragment.

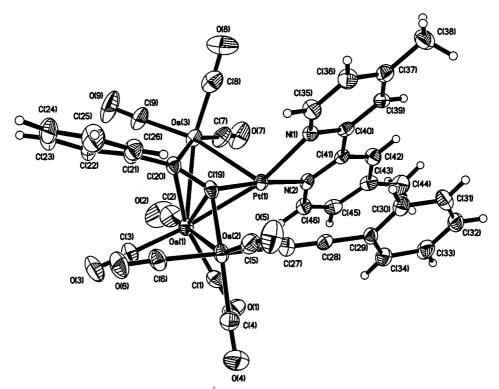
Results and Discussion

The mixed-metal cluster compounds $[Os_3Pt(CO)_9(\mu_4-\eta^2-C\equiv CPh)(\eta^1-C\equiv CPh)(L)]$ (L = Me₂bipy 1, tBu_2 bipy 2) were

readily prepared by the room temperature reactions of the molecular tweezers cis-[Pt(C=CPh)₂(L)] with one molar equivalent of $[Os_3(CO)_{10}(NCMe)_2]$ in CH_2Cl_2 (Scheme 1). Complexes 1 and 2 were isolated by preparative TLC as stable red solids in moderate yields and characterized by satisfactory IR and NMR spectroscopy and FAB mass spectrometry. X-ray crystallography established the full details of their molecular structures and the coordination modes of the alkynyl moiety.

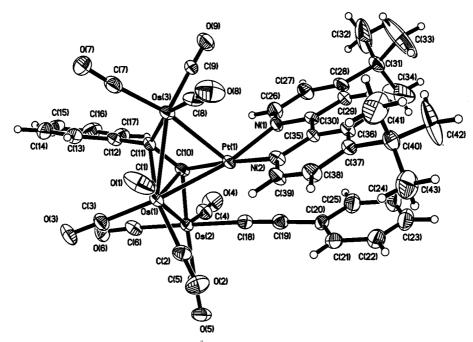
Crystals of 1 and 2 were grown from hexane/CH₂Cl₂ at room temperature. Complex 1 crystallized in an asymmetric unit possessing two crystallographically independent molecules. Perspective drawings of 1 and 2 are depicted in Figure 1 and 2, respectively. The structural features of both 1 and 2 are very similar and they will not be discussed separately. The molecular structures of 1 and 2 reveal that the Os₃ triangle has opened out with Os-Os-Os angles of 112.31(2) and 111.41(3)° in 1 and 2, respectively. This is accompanied by the formation of two Pt-Os bonds. Three carbonyl groups are bound to each osmium atom. The metal core of 1 and 2 consists of an essentially isosceles Os₂Pt triangle, with a third osmium atom, Os(2), apically bonded to Os(1) to give an "out-of-plane" spiked-triangular metal framework. The Pt centre adopts a pseudo square planar geometry. Although there are several known examples of Os₃Pt clusters containing a closed Os₃ triangle with a spiked Pt atom, [18,19] complexes comprising an open triangular cluster of three osmium atoms with a Pt(diimine) moiety spanning one of the two Os-Os bonds are very rare. To the best of our knowledge, structurally characterized examples of such a metal core have only been encountered in $[Os_3Pt(CO)_{11-n}(L)_n(\mu_3-S)_2]$ (n = 1, 2; L = PPh₃, PMe₂Ph) with phosphane ligands on the Pt atom. [20,21] The Pt-Os distances range from 2.6397(6) to 2.6770(6) Å in 1 and 2, and are somewhat shorter than those in previously reported Os₃Pt clusters $\{2.712(1) \text{ Å in } [Os_3Pt(\mu-H)(\mu_4-\eta^2-\mu_4)]$ $C \equiv CPh)(CO)_{10}(PCy_3)],^{[18]}$ 2.714(1) - 2.811(1)

Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P.R. China E-mail: rwywong@net1.hkbu.edu.hk


Scheme 1. Synthesis of complexes 1 and 2

[Os₃Pt(μ -H)₂(μ -CO)(CO)₉(COD)], [^{22]} 2.764(1) Å in [Os₃Pt(μ -H)₂(μ ₄-C)(CO)₁₀{P(cyclo-C₆H₁₁₎₃}], [^{19]} 2.789(1)-2.936(1) Å in [Os₃Pt(CO)₉(PMe₂Ph)₂(μ ₃-S)₂]^[20]}. The spiked Os(1)—Os(2) edge [2.8909(6) Å in 1, 2.914(1) Å in 2] is notably longer than the other Os(1)—Os(3) bond [2.8032(7) Å in 1, 2.810(1) Å in 2] in both cases. The Pt-N bond [2.148(7)—2.174(7) Å] is also lengthened after coordination to the cluster motif relative to those observed in other *cis*-platinum bis(alkynyl) diimine complexes [2.04—2.07 Å], [^{13,14}] probably due to the electron-with-drawing nature of the Os₃ fragment.

Another remarkable feature in the formation of 1 and 2 is the activation of a phenylacetylide unit in the starting platinum complex and its facile transfer from the platinum centre to the spiked osmium atom, resulting in a terminal


alkynyl group on the Os(2) atom. The $-C\equiv CPh$ group is σ -bonded to Os(2) in an η^1 mode with the $C\equiv C$ bond length [average 1.21(2) Å] and Os(2)-C-C bond angle [average 175(1)°] typical of a metal—acetylide bond. The presence of an η^1 -acetylide ligand is a relatively rare phenomenon in osmium cluster chemistry, although terminal acetylides are common in mononuclear osmium complexes. [23–25] A similar feature is only found in the homometallic $[Os_3(CO)_6(\mu-\eta^2-C\equiv CPh)(\eta^1-C\equiv CPh)(\mu-PPh_2)_2(NH_2Et)_2]^{[26]}$ and the heterometallic $[(\eta^5-C_5Me_5)W(O)(\mu-O)Os_3(\eta^1-C\equiv CPh)(CO)_{11}]^{[27]}$ complexes.

The remaining Pt-alkynyl unit is coordinated to the Os₃ chain with a μ_4 - $\eta^2(\parallel)$ -C=CPh moiety (Figure 3), in a manner similar to [CpWOs₃(CO)₁₁(μ_4 - η^2 -C=CPh)] involving an alkynyl transfer and formation of two W-Os bonds.^[28] The

 $\begin{array}{l} Figure \ 1. \ Molecular \ structure \ of \ 1; important \ bond \ lengths \ (\mathring{A}) \ and \ angles \ (°): \ Pt(1)-Os(1) \ 2.6732(6), \ Pt(1)-Os(3) \ 2.6397(6), \ Os(1)-Os(2) \ 2.8909(6), \ Os(1)-Os(3) \ 2.8032(7), \ Pt(1)-C(19) \ 2.011(9), \ Os(1)-C(19) \ 2.169(9), \ Os(1)-C(20) \ 2.30(1), \ Os(2)-C(19) \ 2.06(1), \ Os(3)-C(20) \ 2.16(1), \ Os(2)-C(27) \ 2.08(1), \ C(19)-C(20) \ 1.37(1), \ C(27)-C(28) \ 1.21(1); \ Os(1)-Pt(1)-Os(3) \ 63.69(2), \ Pt(1)-Os(1)-Os(3) \ 57.58(2), \ Pt(1)-Os(3)-Os(1) \ 58.74(2), \ Pt(1)-Os(1)-Os(2) \ 71.58(1), \ Os(2)-Os(1)-Os(3) \ 112.42(2), \ Pt(1)-C(19)-C(20) \ 112.1(7), \ Os(3)-C(20)-C(19) \ 103.5(6), \ C(19)-Os(1)-C(20) \ 35.6(4), \ Os(2)-C(27)-C(28) \ 174.0(9) \end{array}$

SHORT COMMUNICATION

 $\begin{array}{l} Figure \ 2. \ Molecular \ structure \ of \ \textbf{2}; important \ bond \ lengths \ (\mathring{A}) \ and \ angles \ (°): Pt(1) - Os(1) \ 2.6604(8), Pt(1) - Os(3) \ 2.6500(9), Os(1) - Os(2) \ 2.914(1), Os(1) - Os(3) \ 2.810(1), Pt(1) - C(10) \ 2.018(9), Os(1) - C(10) \ 2.196(9), Os(1) - C(11) \ 2.326(9), Os(2) - C(10) \ 2.04(1), Os(3) - C(11) \ 2.075(9), Os(2) - C(18) \ 2.10(1), C(10) - C(11) \ 1.42(1), C(18) - C(19) \ 1.21(2); Os(1) - Pt(1) - Os(3) \ 63.90(3), Pt(1) - Os(1) - Os(3) \ 57.87(2), Pt(1) - Os(3) - Os(1) \ 58.23(3), Pt(1) - Os(1) - Os(2) \ 71.95(3), Os(2) - Os(1) - Os(3) \ 111.41(3), Pt(1) - C(10) - C(11) \ 109.1(6), Os(3) - C(11) - C(10) \ 105.9(6), C(10) - Os(1) - C(11) \ 36.4(3), Os(2) - C(18) - C(19) \ 176(1) \end{array}$

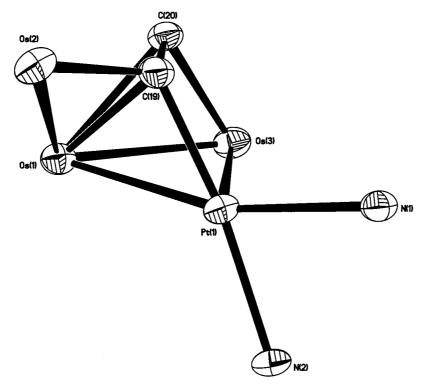


Figure 3. A perspective view of 1 showing the metal core and alkynyl coordination

vectors Pt(1)—Os(3) and C(19)—C(20) in **1** as well as Pt(1)—Os(3) and C(10)—C(11) in **2** are nearly parallel. Although μ_4 - $\eta^2(\perp)$ bonding modes have been documented for acetylides in spiked tetrametallic systems such as $[Os_3Pt(\mu_4-\eta_4-\eta_4)] = [(\eta_5-C_5H_5)FeRuCo_2-\eta_4] = [(\eta_5-C_5H_5)FeRuCo_2-\eta_4]$

 $\begin{array}{lll} (CO)_9(\mu\text{-CO})(\mu_4\text{-}\eta^2\text{-}C\!\equiv\!CPh)],^{[29]} & [(\eta^5\text{-}C_5H_5)_2Ni_2Fe_2\text{-}\\ (CO)_5(\mu\text{-}PPh_2)(\mu_4\text{-}\eta^2\text{-}C\!\equiv\!CPh)]^{[30]} & \text{and} & [Ru_3Pt(\mu\text{-}H)\{\mu_4\text{-}\eta^2\text{-}C\!\equiv\!C(tBu)\}(CO)_9(COD)],^{[31]} & \text{clusters} & \text{with} & \text{a} & \mu_4\text{-}\eta^2(\|)\text{-}\\ C\!\equiv\!CPh & \text{group} & \text{are, to the best of our knowledge, not common.} & \text{The } C(19)-C(20)-Os(3)-Pt(1) & \text{mean plane makes a} \end{array}$

dihedral angle of 57.2° with the triangular Os_2Pt plane in 1 [58.2° in 2]. Formally, the μ_4 - η^2 -C=CPh ligand forms a π bond with Os(1) and three separate σ bonds to Os(2), Os(3) and Pt(1) in each case. Assuming that the μ_4 - η^2 -C=CPh and η^1 -C=CPh moieties act as a five- and one-electron donor, respectively, each of the complexes 1 and 2 has 62 cluster valence electrons (CVE) which is consistent with a 16-electron Pt centre. This apparent low CVE count is commonly observed in clusters containing Pt atoms. [32]

Experimental Section

Preparation of $[Os_3Pt(CO)_9(\mu_4-\eta^2-C\equiv CPh)(\eta^1-C\equiv CPh)(Me_2bipy)]$ (1): A CH_2Cl_2 solution of $[Os_3(CO)_{10}(NCMe)_2]$ (0.050 g, 0.054 mmol) was stirred at room temperature with cis- $[Pt(C \equiv CPh)_2(Me_2bipy)]^{[14,33]}$ (0.031 g, 0.054 mmol) under nitrogen. After 30 min. the solvent was evaporated under vacuum, and the crude product was purified by preparative TLC, eluting with nhexane/CH₂Cl₂ (3:2, v/v) to afford an orange band ($R_f = 0.30$) which was identified as complex 1 (0.023 g, 30%). – IR (CH₂Cl₂): v(CO) = 2084 w, 2065 w, 2048 vs, 2012 s, 1998 m, 1973 m and1960 sh cm⁻¹. - ¹H NMR (CDCl₃): $\delta = 2.33$ (s, 3 H, Me), 2.49 (s, 3 H, Me), 6.08 (d, J = 7.3 Hz, 2 H, H_f), 6.58 (t, J = 7.3 Hz, 2 H, H_e), 6.79 (t, J = 7.3 Hz, 1 H, H_d), 7.16–7.49 (m, 9 H, H_b, H_b, H_c , $H_{c'}$ and Ph), 8.67 (d, J = 6.8 Hz, 1 H, H_a or $H_{a'}$), 8.85 (d, $J = 5.4 \text{ Hz}, 1 \text{ H}, \text{ H}_{\text{a}} \text{ or } \text{H}_{\text{a}'}). - \text{FAB MS: } m/z = 1404 \text{ [M}^{+}]. -$ C₃₇H₂₂N₂O₉Os₃Pt (1404.27): calcd. C 31.51, H 1.57, N 1.99; found C 31.40, H 1.45, N 1.78.

Preparation of [Os₃Pt(CO)₉(μ₄-η²-C≡CPh)(η¹-C≡CPh)(tBu₂bipy)] (2): A mixture of [Os₃(CO)₁₀(NCMe)₂] (0.050 g, 0.054 mmol) and [Pt(C≡CPh)₂(tBu₂bipy)] (0.036 g, 0.054 mmol) was stirred at room temperature under nitrogen for 30 min. The resulting orange-red solution was evaporated to dryness and the residue was subjected to TLC with *n*-hexane/CH₂Cl₂ (3:2, v/v) as eluent to give complex 2 as an orange band ($R_f = 0.50$) in 28% yield (0.022 g). − IR (CH₂Cl₂): v(CO) = 2083 w, 2064 w, 2048 vs, 2011 s, 1998 m, 1972 m and 1958 sh cm⁻¹. − ¹H NMR (CDCl₃): δ = 1.30 (s, 9 H, tBu), 1.43 (s, 9 H, tBu), 6.02 (d, J = 7.6 Hz, 2 H, H_f), 6.53 (t, J = 7.6 Hz, 2 H, H_e), 6.78 (t, J = 7.6 Hz, 1 H, H_d), 7.18−7.60 (m, 9 H, H_b, H_b', H_c, H_c' and Ph), 8.74 (d, J = 5.4 Hz, 1 H, H_a or H_a'), 8.91 (d, J = 5.7 Hz, 1 H, H_a or H_a'). − FAB MS: m/z = 1488 [M⁺]. − C₄₃H₃₄N₂O₉Os₃Pt (1488.43): calcd. C 34.70, H 2.30, N 1.88; found C 34.49, H 2.20, N 1.75.

Crystallographic Data for 1·CH₂Cl₂: $C_{38}H_{24}Cl_2N_2O_9Os_3Pt$, M=1489.18, triclinic, space group P1(bar), a=9.317(1), b=17.843(2), c=25.672(3) Å, $\alpha=73.857(2)$, β=87.260(2), $\gamma=86.020(2)^\circ$, U=4087.8(8) Å³, Z=4, U=293 K, U=293 K

Crystallographic Data for 2·CH₂Cl₂: $C_{44}H_{36}Cl_2N_2O_9Os_3Pt$, M=1573.34, triclinic, space group P1(bar), a=11.420(2), b=13.972(3), c=16.438(3) Å, $\alpha=111.92(3)$, $\beta=101.84(3)$, $\gamma=90.69(3)^\circ$, U=2370.1(8) Å³, Z=2, T=293 K, $\mu(\text{Mo-}K_a)=111.23$ cm⁻¹, 13770 reflections measured, 10007 unique, R(int)=0.0484, final R1=0.0553, wR2=0.1639 (based on F^2) for 10007 $[I>2\sigma(I)]$ observed reflections.

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cam-

bridge Crystallographic Data Centre as supplementary publication nos. CCDC-151605 (1) and CCDC-151606 (2). Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

W.-Y. W. thanks the Hong Kong Baptist University for financial support and F.-L. T. acknowledges the receipt of a studentship administered by the Hong Kong Baptist University.

- [1] I. Manners, Angew. Chem. Int. Ed. Engl. 1996, 35, 1602-1621.
- [2] R. P. Kingsborough, T. M. Swager, Prog. Inorg. Chem. 1999, 48, 123-231.
- [3] N. J. Long, A. J. Martin, R. Vilar, A. J. P. White, D. J. Williams, M. Younus, *Organometallics* 1999, 18, 4261–4269.
- [4] T. J. McKay, J. A. Bolger, J. Staromlynska, J. R. Davy, J. Chem. Phys. 1998, 108, 5537-5541.
- [5] N. Chawdhury, A. Köhler, R. H. Friend, M. Younus, N. J. Long, P. R. Raithby, J. Lewis, *Macromolecules* 1998, 31, 722-727.
- [6] C. J. Adams, S. L. James, P. R. Raithby, Chem. Commun. 1997, 2155–2156.
- [7] N. Chawdhury, A. Köhler, R. H. Friend, W. Y. Wong, J. Lewis, M. Younus, P. R. Raithby, T. C. Corcoran, M. R. A. Al-Mandhary, M. S. Khan, J. Chem. Phys. 1999, 110, 4963-4970.
- [8] J. Lewis, P. R. Raithby, W. Y. Wong, J. Organomet. Chem. 1998, 556, 219-228.
- [9] W. Y. Wong, W. K. Wong, P. R. Raithby, J. Chem. Soc., Dalton Trans. 1998, 2761–2766.
- [10] W. Y. Wong, S. M. Chan, K. H. Choi, K. W. Cheah, W. K. Chan, *Macromol. Rapid Commun.* 2000, 21, 453-457.
- [11] S. Yamazaki, A. J. Deeming, J. Chem. Soc., Dalton Trans. 1993, 3051–3057.
- [12] D. Zhang, D. B. McConville, C. A. Tessier, W. J. Youngs, Organometallics 1997, 16, 824–825.
- ^[13] C. J. Adams, P. R. Raithby, *J. Organomet. Chem.* **1999**, *578*, 178–185.
- [14] C. J. Adams, S. L. James, X. Liu, P. R. Raithby, L. J. Yellowlees, J. Chem. Soc., Dalton Trans. 2000, 63-67.
- [15] J. R. Berenguer, E. Eguizábal, L. R. Falvello, J. Forniés, E. Lalinde, A. Martin, *Organometallics* 2000, 19, 490-496.
- [16] S. Back, H. Lang, Organometallics 2000, 19, 749-751.
- [17] J. Forniés, E. Lalinde, J. Chem. Soc., Dalton Trans. 1996, 2587–2599.
- [18] P. Ewing, L. J. Farrugia, J. Organomet. Chem. 1987, 320, C47-C50.
- [19] L. J. Farrugia, A. D. Miles, F. G. A. Stone, J. Chem. Soc., Dalton Trans. 1985, 2437–2447.
- [20] R. D. Adams, I. T. Horvãth, S. Wang, *Inorg. Chem.* 1986, 25, 1617–1623.
- [21] R. D. Adams, T. S. A. Hor, I. T. Horvãth, *Inorg. Chem.* 1984, 23, 4733-4738.
- [22] P. Ewing, L. J. Farrugia, J. Organomet. Chem. 1988, 347, C31-C34.
- [23] M. A. Esteruelas, F. J. Lahoz, A. M. López, E. Oñate, L. A. Oro, *Organometallics* 1995, 14, 2496-2500.
- [24] A. J. Hodge, S. L. Ingham, A. K. Kakkar, M. S. Khan, J. Lewis, N. J. Long, D. G. Parker, P. R. Raithby, J. Organomet. Chem. 1995, 488, 205-210.
- [25] M. C. B. Colbert, J. Lewis, N. J. Long, P. R. Raithby, A. J. P. White, D. J. Williams, J. Chem. Soc., Dalton Trans. 1997, 99–104.
- [26] A. A. Cherkas, N. J. Taylor, A. J. Carty, J. Chem. Soc., Chem. Commun. 1990, 385–387.
- [27] C. W. Shiu, Y. Chi, A. J. Carty, S. M. Peng, G. H. Lee, Organometallics 1997, 16, 5368-5371.

SHORT COMMUNICATION

- Y. Chi, G.-H. Lee, S.-M. Peng, C.-H. Wu, Organometallics 1989, 8, 1574-1576.
 E. Roland, H. Vahrenkamp, Organometallics 1983, 2, 1048-1049.
- [30] C. Weatherell, N. J. Taylor, A. J. Carty, E. Sappa, A. Tiripicchio, *J. Organomet. Chem.* 1985, 291, C9-C12.
 [31] P. Ewing, L. J. Farrugia, *Organometallics* 1989, 8, 1246-1260.
- [32] E. Sappa, A. Tiripicchio, A. J. Carty, G. E. Toogood, Prog. Inorg. Chem. 1987, 35, 437-525.
- [33] S. L. James, M. Younus, P. R. Raithby, J. Lewis, *J. Organomet. Chem.* **1997**, *543*, 233–235.

Received November 2, 2000 [I00415]